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Background The way a person moves is a direct reflection of
their neurological and musculoskeletal health, yet it remains
one of the most underutilized vital signs in clinical practice.
Although clinicians visually observe movement impairments,
they lack accessible and validated methods to objectively mea-
sure movement in routine care. This gap prevents wider use
of biomechanical measurements in practice, which could enable
more sensitive outcome measures or earlier identification of im-
pairment.

Methods In this work, we present our Portable Biomechan-
ics Laboratory (PBL), which includes a secure, cloud-enabled
smartphone app for data collection and a novel algorithm for fit-
ting biomechanical models to this data. We extensively validated
PBL’s biomechanical measures using a large, clinically repre-
sentative and heterogeneous dataset with synchronous ground
truth. Next, we tested the usability and utility of our system in
both a neurosurgery and sports medicine clinic.

Results We found joint angle errors within 3 degrees and pelvis
translation errors within several centimeters across participants
with neurological injury, lower-limb prosthesis users, pediatric
inpatients, and controls. In addition to being easy and quick to
use, gait metrics computed from the PBL showed high reliability
(ICCs > 0.9) and were sensitive to clinical differences. For exam-
ple, in individuals undergoing decompression surgery for cervi-
cal myelopathy, the modified Japanese Orthopedic Association
(mJOA) score is a common patient-reported outcome measure;
we found that PBL gait metrics not only correlated with mJOA
scores but also demonstrated greater responsiveness to surgical
intervention than the patient-reported outcomes.

Conclusions These findings support the use of handheld
smartphone video as a scalable, low-burden tool for cap-
turing clinically meaningful biomechanical data, offering
a promising path toward remote, accessible monitoring of
mobility impairments in clinical populations. To promote
further research and clinical translation, we release the first
method for measuring whole-body kinematics from hand-
held smartphone video validated in clinical populations:
https://IntelligentSensingAndRehabilitation.
github.io/MonocularBiomechanics/.
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Introduction
Many clinical conditions have pronounced movement phe-
notypes which are rarely measured in clinical practice (1–
3). For example, temporal parameters, including stride time
and swing time, have been shown to predict fall risk in older
adults (4). Patients with knee osteoarthritis (KOA) also show
altered gait kinematics, which can predict disease progres-
sion (5, 6). Gait kinematics can also characterize recov-
ery dynamics after neurological injury and even predict re-
sponses to particular interventions (7, 8). The Stroke Re-
covery and Rehabilitation Roundtable emphasized the im-
portance of incorporating movement quantification into clin-
ical trials, while noting that logistical challenges in capturing
such data remain a significant barrier (9). Traditionally, gait
analysis requires a specialized laboratory equipped with an
optical motion capture (OMC) system and force plates, mak-
ing it expensive, time-consuming, and typically only covered
by insurance in limited circumstances (10). In some cases,
such as orthopedic surgical planning, force plate measure-
ments and electromyography are required to ensure the pre-
cision of marker-based measurements.
Currently, gait is more commonly characterized using the 10-
meter walk or 6-minute walk tests, which capture only speed
and endurance. Other assessments—such as the Timed Up
and Go (TUG) (11), the Berg Balance Scale (BBS) (12), and
the Functional Gait Assessment (FGA) (13)—evaluate move-
ment quality using clinical scoring methods that are either
subjective or limited to stopwatch-based timing, but do not
directly quantify the movement itself. Scalable, accessible
movement analysis in the clinic would substantially improve
upon the status quo.
Recent advances in AI-based methods offer a promising path
forward. Multi-view markerless motion capture (MMMC)
requires much less time to acquire and less manual post-
processing than OMC. In recent years, numerous studies have
demonstrated that MMMC produces similar kinematics to
OMC in multiple populations (14–23). OpenCap (24) even
allows MMMC to be performed using videos collected from
multiple smartphones mounted on tripods. We have also de-
veloped methods for MMMC (25–28). A key differentia-
tor of our approaches is the use of MuJoCo (29), a high-
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performance physics simulator for machine learning that sup-
ports differentiable biomechanical models. This enables us
to directly end-to-end optimize the kinematics and skeleton
scale from videos. Our end-to-end approach outperforms al-
ternatives that reproduce two-stage marker-based pipelines
that first estimate virtual marker locations and then com-
pute inverse kinematics on these trajectories (26, 27). While
MMMC is faster than OMC, having multiple synchronized
cameras that are spatially calibrated is much less clinically
accessible than simply recording with a smartphone.
To make movement analysis more accessible, we previ-
ously developed a smartphone app for collecting smartphone
videos from clinic (30), which we call our Portable Biome-
chanics Laboratory (PBL), and validated that we could accu-
rately detect gait events from this data (31). We also tested
whether our end-to-end approach to biomechanics can recon-
struct kinematics from these smartphone videos and wearable
sensors (32). In addition to demonstrating that we could fuse
this data, we also found that when the participant is not ob-
scured, we can obtain accurate knee kinematics from smart-
phone video alone. Fig. 1 provides an overview of our ap-
proach. In this study, we validate the accuracy of whole-body
kinematics computed with our system and test it in the clinic,
showing that the resulting gait metrics are sensitive to the
clinical history of our participants. Next, we compare the re-
sponsiveness of gait metrics to traditional outcome measures.
Specifically, we monitored the gait of a cohort of participants
undergoing decompression surgery for cervical myelopathy
(CM). We find that gait metrics show higher responsiveness
than the modified Japanese Orthopedic Association (mJOA),
a commonly used outcome measure for CM (33, 34). Our
study demonstrates that quantitative movement analysis can
be integrated into a clinic in an accessible and usable work-
flow, producing accurate and useful results, and that it can
be more responsive than traditional clinical outcomes assess-
ments.

Methods
Portable Biomechanics Laboratory. We developed a plat-
form called Portable Biomechanics Laboratory (PBL), which
records color video, optional depth video, and internal phone
sensor information (accelerometer, gyroscopes, and orienta-
tion) from a moving, handheld smartphone (Fig. 1A). The ap-
plication can optionally be connected to wearable IMUs with
all modalities closely synchronized (30, 32). After a record-
ing is finished, PBL uploads the data to a secure cloud plat-
form where data can be pulled into PosePipe (35), an open-
source package we developed for managing and processing
videos.

Video Preprocessing. Using PosePipe (35), we identified the
subject of interest in each video using DeepSortYOLOv4
(36). Next, we extracted 2D and 3D virtual marker locations,
termed "keypoints", from each video frame using MeTRAbs-
ACAE (37) (Fig. 1B). We previously identified the 87 key-
points from the MoVi dataset (38) to be sufficient for full-
body kinematics (39).

Biomechanical Fitting. We obtained kinematics by optimiz-
ing the fit of biomechanical models using our end-to-end dif-
ferentiable biomechanics framework (26, 32). A complete
description is in the Supplemental Methods; here we provide
a brief overview (Fig. 1C,D). We represented a movement
trajectory as a neural network that maps time to pelvis lo-
cation and joint angles, termed an "implicit function". This
network was optimized to minimize error between predicted
virtual markers and those extracted from video, using GPU-
accelerated physics simulation in MuJoCo (29, 40).

Datasets. We applied our monocular fitting approach to three
datasets. The first of these recorded clinical participants with
the PBL system and also an MMMC system. The second
used iPhone videos and an OMC system, but only contained
able-bodied individuals. The third dataset reflects our in-
tended use case of videos recorded from participants seen
in various clinics, which we used to demonstrate our method
can capture clinically meaningful features of gait. Combined,
these datasets contain 21 hours of data.

1. Our MMMC dataset includes 11.7 hours of recordings
from 161 sessions with 148 participants performing
walking and lower-limb functional tasks. Of these, 121
participants were recorded simultaneously using both
the PBL system (30) and our MMMC system (26, 41).
This subset included 33 healthy controls, 6 pediatric in-
patients, 48 lower limb prosthesis users (LLPUs), and
40 participants with neurological injury. An additional
27 neurological inpatients were recorded using only
the MMMC system on a clinical floor. For neurologic
patients, we extracted clinical outcome scores—such
as the 10 Meter Walk Test (10MWT) and Berg Balance
Scale (BBS) (12)—from 54 participants across 95 vis-
its.

2. The OMC dataset used was BML-MoVi (38), a pub-
licly available dataset of 90 healthy controls perform-
ing a variety of sports and upper/lower body move-
ments. It contains 3.8 hours of synchronized video
(captured with an iPhone 7) and OMC data using a
dense 87-marker set. We fit this dataset using our
end-to-end differentiable biomechanics approach (26),
applying the same biomechanical model used for the
MMMC and PBL datasets.

3. Our in-clinic dataset includes 5.5 hours of video from
74 participants recorded with the PBL system during
outpatient clinic visits: 55 from a neurosurgery clinic
for cervical myelopathy (CM) and 19 from a clinic for
knee osteoarthritis (KOA). After their standard physi-
cian consultations, participants walked in the clinic
hallway while a researcher recorded them using the
PBL system. CM participants also completed the Mod-
ified Japanese Orthopedic Association (mJOA) ques-
tionnaire (33, 34), which scores upper and lower ex-
tremity function. Seventeen CM participants were
recorded at visits both before and after surgery.
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Fig. 1. Methods Overview. We introduce a method for biomechanically grounded movement analysis in clinical settings using a handheld smartphone. A) Researchers
held a smartphone (optionally with gimbal) while following a participant walking. Our system has no specific requirements regarding viewing angle, distance to subject, or
therapist assistance. B) Recorded smartphone video and optional wearable sensor data are stored in the cloud, and processed using PosePipe, an open-source package
implementing computer vision models for person tracking and keypoint detection. C) To reconstruct movement, we represent movement as a function that outputs joint
angles, which—combined with body scaling parameters and evaluated through forward kinematics—generate a posed biomechanical model in 3D space. This untrained
model is compared to video-extracted joint locations and optionally smartphone sensor data to compute a loss. This loss guides backpropagation to iteratively refine both
the kinematic trajectory and body scale. D) Initially, the representation lacks knowledge of the person’s movements and scale (e.g., height, limb proportions), but after
optimization, it typically tracks joint locations within 15 mm in 3D and 5 pixels in 2D.

Accuracy Evaluation. To evaluate the accuracy of the
smartphone-based fits compared to OMC and MMMC, we
computed the Median Joint Angle Error (MJAE). This is the
median of the absolute difference between the two systems
over a trial for each joint.
To compare moving (handheld) vs static camera video, we
also computed fits from single cameras in the MMMC
dataset. As the MMMC videos captured participants from
every angle, we examined the effect of camera viewpoints on
joint angle error by classifying the camera position relative to
the person into front, back, ipsilateral and contralateral.
For static camera and some PBL fits, we report the Root
Translation Error (RTE), defined as the average Euclidean er-
ror between the pelvis location from the PBL reconstruction
and ground truth OMC/MMMC reconstruction. For PBL, we
computed the RTE only for fits with camera rotation but no
translation (e.g. during a TUG trial).
When aggregating errors over trials, we report the median
and normalized interquartile range (nIQR) for MJAE where
nIQR = IQR ·0.7413.

Gait Metrics and Sensitivity to Clinical Condition. To test
whether our portable system collected clinically meaningful
information, we calculated the Gait Deviation Index (GDI)
(42). Briefly, the GDI uses a dimensionality reduction tech-
nique (42, 43) on cycle-aligned joint kinematics and then

measures the distance in this subspace to a distribution of
normative gait trials. For the normative distribution, we
used PBL and MMMC reconstruction from controls in the
MMMC dataset as well as an additional 136 participants
without gait impairments recruited at the American Society
of Biomechanics meeting, resulting in 9,008 normative steps.
We also computed double support time and cadence using a
model for gait event detection we previously developed and
validated (30, 31).

Clinical metrics must be reliable, valid, and responsive.
To assess reliability, we computed intra-class correlations
(ICCs) between steps taken by the same individual on the
same day (44). Construct validity of the GDI was tested by
comparing groups with known differences (e.g., transfemoral
vs. transtibial amputees) and by correlating kinematic met-
rics with established clinical scores, including the mJOA,
10MWT, and BBS. To assess responsiveness, we compared
the smartphone-based metrics and the mJOA following sur-
gical decompression in the CM dataset using the Standard-
ized Response Mean (SRM) (45, 46). Confidence intervals
on SRMs were computed using a jackknife resampling pro-
cedure (46, 47).
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Fig. 2. Biomechanical Reconstructions from Handheld Smartphone. Using only a handheld smartphone, our PBL and end-to-end biomechanical fitting approach robustly
captures movement across varied clothing types, assistive devices, and clinical environments. A) We first validate this approach on clinical outpatients in our lab, including
participants using assistive devices or receiving support from a clinician as needed. B) We next deploy this approach in an outpatient clinic for patients with gait impairments,
finding this method minimally disrupting clinical workflow while capturing relevant gait features. C) This technique allows deployable biomechanical capture in dynamic clinical
settings as well as outdoors.

Results

Ground Truth Comparison. In general, kinematics from a
single camera closely matched MMMC and OMC. Example
overlays demonstrate our method is robust to common mo-
bility aids (Fig. 2) and kinematic traces (Fig. 3A) reflect
clinical impairments like neurologic or prosthetic asymme-
tries. Quantitative ground truth comparisons are presented in
Table 1 and Supplement.
For the MMMC dataset, the MJAE between a handheld mov-
ing camera and MMMC was 2.79°. This error was slightly
higher for static camera fits using a single view from the
MMMC system (2.96°), likely due to the greater distances
to the person. The error was the greatest in the neurological
population, with an MJAE of 3.32 degrees, lower for LLPUs
(2.97°), and lowest for controls at 2.51 degrees (Fig. 4B,
Table S2). Our method also performed well on the BML-
MoVi dataset, showing only 2.74 degrees of MJAE from the
monocular fits compared to OMC.
Frontal-plane joint angles (e.g., hip adduction) were best
estimated from frontal views, while sagittal-plane joint an-
gles (e.g., hip and knee flexion) were more accurately esti-
mated from sagittal views (one-sided Mann-Whitney U-tests;
p<0.005 for all comparisons). This difference was greatest

Table 1. Summary of errors for different datasets. MJAE is the median joint
angle error (in degrees) and RTE is the median root translation error (in cm). Errors
are presented as: (Median (nIQR)).

MMMC OMC
Handheld Static Static

MJAE (deg) 2.79 (0.86) 2.96 (0.78) 2.74 (0.50)
RTE (cm) 6.44 (4.77) 5.00 (4.68) 2.41 (0.63)

for knee flexion at 1.02 degrees (Fig. 3C).

Visual comparisons of root position between single-camera
and multi-view fits are shown in Figure 3D. The clinical
dataset using a handheld, rotating smartphone yielded an av-
erage RTE of 6.44 cm, while a static camera yielded 5.00 cm.
RTE for the BML-MoVi dataset with a static smartphone av-
eraged 2.41 cm (Table 1).

Clinical Feasibility. PBL was accessible and easy to use,
causing minimal disruption to routine workflows in both
KOA and CM clinics. It required no special clothing, light-
ing, or calibration—we simply followed participants with a
handheld phone as they walked.
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Fig. 3. Quality Measures of Single Camera Fitting A) Kinematic traces from smartphone video (red/blue) compared to ground truth (gray dashed) during walking. B) Joint
angle errors across populations for select lower limb angles. n denotes the number of unique individuals in each cohort and v denotes the number of total videos for that
cohort. C) Select joint angle errors with respect to camera view angle show that sagittal plane angles have the lowest error with sagittal camera views, and frontal angles
have the lowest error with frontal views. D) Pelvis translation (RTE) extracted from handheld smartphone video compared to ground truth during functional gait assessments.

Movement Quality Metrics. The Gait Deviation Index
(GDI) provides a holistic measure of movement quality that
we use to summarize the information found in PBL-based
measures of movement. We test this measure for repeatabil-
ity, validity, and responsiveness.

GDI Repeatability. We analyzed the >13,500 steps across 222
individuals recorded with the PBL system, and found high
repeatability of 0.84 for the GDI of a single step (ICC2) and
higher repeatability when averaging multiple steps together:
0.96 (ICC2k) (Table 2). ICCs for spatiotemporal metrics
were lower—likely due to timing variability—but remained
highly repeatable when averaged (ICC2k).

GDI Construct Validity. We found the GDI measured with our
PBL is sensitive to clinical differences between participants
(Fig. 5). Performance on the BBS is used to classify fall risk
and was measured for our neurologic participants. The GDI
was statistically different between the low and high fall-risk
participants, and both were different than the control partic-
ipants (Fig. 5B). The GDI also correlates well with walking
speed measured during the 10MWT (Pearson’s r = 0.82), one
of the most commonly measured clinical outcomes for gait
(Fig. 5C). It is important to note GDI and 10MWT measure
different things, as it is possible to walk faster using a higher
cadence with an unchanging kinematic trajectory. Next, the
GDI is significantly decreased in transtibial amputees com-
pared to controls and further decreased for transfemoral am-
putees (Fig. 5D). The KOA population was also statistically
different from control with a mean GDI of 83.5 (10.8). Fi-

nally, the GDI showed a significant correlation with mJOA
(r = 0.47) and the lower extremity subscore of the mJOA
(r = 0.48) (Fig. 5E, Table 2).

GDI Responsiveness. We found that quantitative, PBL-based
metrics all had higher responsiveness to surgical intervention
than the mJOA, a commonly used clinical outcome measure
(Table 2). Notably, the jackknife confidence intervals for GDI
and DST did not cross zero while the mJOA did, suggesting
greater effect size stability, though not necessarily statistical
significance.

Discussion
We present a clinically validated method for extracting ac-
curate biomechanics from smartphone video in clinical set-
tings. Across diverse populations, our single-camera system
showed strong agreement with ground truth (typically < 3◦

error). Gait quality metrics derived from these videos de-
tected clinically relevant group differences and were more
responsive than the mJOA following decompression surgery.
These findings suggest that a clinician, therapist, or medi-
cal assistant could feasibly perform gait analysis in under a
minute to obtain an objective measurement of a patient’s gait
impairment to sensitively track their recovery.
Joint angle errors were generally low across all populations
and settings (Table 1). We attribute the slightly higher MJAE
in clinical populations (0.46 - 0.81 degrees, Fig. 3B, Fig. 4B,
Table S2) to assistive devices such as canes, walkers, ankle
foot orthoses, or gait belts (Fig. 2) and the fact that keypoint

Peiffer et al. | Portable Biomechanics Laboratory | 5



A B

C

Errors By Activity Errors by Population

Errors By Dataset

Handheld
Static

Fig. 4. Joint Angle Error Distributions. A) In the MMMC dataset, MJAE distributions remain relatively stable when aggregated across activity types, participant populations
(B), as well as between handheld (moving) and static cameras. C) Joint-specific MJAE distributions from both the MMMC and BML-MoVi datasets.

Table 2. Reliability, Validity, and Responsiveness of Smartphone-Based Metrics. ICCs are presented as ICC (95% confidence intervals). mJOA and mJOA-LE show
Spearman correlations between gait metric and ordinal ratings. SRM a unitless measure of change in metric before and after surgery, with 95% confidence intervals. *
indicates p < 0.05.

ICC2 ICC2k r mJOA r mJOA-LE SRM

mJOA - - - - 0.20 (-0.38 0.78)
mJOA-LE - - - - 0.14 (-0.45 0.72)
Cadence 0.58 (0.52 0.64) 0.88 (0.85 0.90) 0.25* 0.39* 0.34 (-0.20 0.88)
DST 0.41 (0.35 0.48) 0.78 (0.72 0.82) -0.27* -0.37* -0.48 (-0.88 -0.07)
GDI 0.84 (0.81 0.86) 0.96 (0.96 0.97) 0.47* 0.48* 0.45 (0.00 0.91)
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Fig. 5. Clinical Validity of Smartphone-Based Gait Deviation Index. A) Hip and Knee flexion angles of clinical and control groups B) GDI separates groups at risk of
falls determined by the Berg Balance Scale. C) GDI correlates with 10 Meter Walk Test performance r = 0.82. D) GDI of LLPUs and KOA participants is significantly lower
than that of control populations. Further, GDI of Transfemoral amputees is significantly lower than GDI of Transtibial amputees. E) GDI collected in clinical settings correlates
(r = 0.47) with the mJOA, a clinically used ordinal questionnaire.

detection does not perform as well on prosthetic devices (30).

A Responsive and Valid Metric of Functional Status.
Our method measured reliable, valid, and responsive features
of movement which is arguably more important for clinical
practice than joint angle accuracy. GDI demonstrated con-
struct validity for multiple clinical populations, such as being
different for inpatients with a high fall risk than low fall risk
based on the BBS (Fig. 5B) and correlated highly with the
10MWT (Fig. 5C), both important outcome measures used
commonly in clinical practice.
The GDI had a moderate correlation with the mJOA. We
note that we do not necessarily expect a strong association
between the GDI, a continuous quantitative measure, as the
mJOA is a patient-reported ordinal scale. Despite the differ-
ences, the GDI and mJOA both responded positively to spinal
decompression in the surgical group recorded before/after
their surgery (Table 2). Notably, the GDI had a higher SRM
(0.45) than both the mJOA (0.20) and mJOA-LE (0.14), with
a 95% confidence interval that remained entirely above zero.
This indicates that our easy-to-use system could be more sen-
sitive than the widely used mJOA.
We focused on the GDI because it is a widely used summary
of gait kinematics. However, we do not claim it is the opti-
mal metric for every application. Instead, we anticipate that

scalable gait analysis will enable new research to identify the
most clinically meaningful measures. For example, we re-
cently described a method for inferring torques and ground
reaction forces from kinematics and saw that the ground re-
action forces are sensitive to clinical history (48).

Limitations. The minimally clinically important difference
for kinematic features of gait has not yet been established
for many clinical conditions. While our accuracy is generally
quite good, greater accuracy may be required for certain indi-
cations. For example, the 5 degrees of error we typically see
at the ankle might be insufficient to detect subtle changes in
plantarflexion spasticity or toe clearance from a single cam-
era.
We also note the heavy tails in our error distributions with
some trials having errors >10 degrees (Fig. 4C) and our
analysis of the reconstruction errors (Fig. S2) indicated little
relationship between reconstruction error and MJAE, high-
lighting the need for reliable confidence scores from mark-
erless motion capture. We have developed methods for both
monocular videos without biomechanics (49), and for biome-
chanics from multi-view video (25). Extending these confi-
dence intervals to monocular biomechanics is an important
future direction.

Peiffer et al. | Portable Biomechanics Laboratory | 7



Uniquely Accessible and Validated Approach for Clin-
ical Implementation. Other approaches have proposed de-
ployable systems for human motion capture. Most well-
known is OpenCap, which uses two smartphones on static
tripods (24) to triangulate joint locations from video and fit
biomechanics using the widely used OpenSim framework
(50, 51). During walking, the approach presented here shows
similar joint angle errors to OpenCap (4.1°) using just a sin-
gle, moving, camera. OpenCap does go a step further than
our approach and produces joint kinetics, which we can in-
corporate in the future, such as using our Kinetic Twin ap-
proach (48). Our experience with PBL shows that the ability
to use a single portable camera is critical for easy use in the
clinic.
Two recent works estimate biomechanics from monocular
video: BioPose (52) and Human Skeleton and Mesh Recov-
ery (HSMR) (53). Neither was evaluated on clinical popu-
lations. Our method differs by using trajectory optimization
with a single, fixed skeleton scale across trials, and it can
readily incorporate wearable sensors (32). HSMR directly
regresses joint angles from images, which is fast but likely
limited to poses seen in its training data of able-bodied in-
dividuals—raising concerns about generalization to clinical
movements. It also does not report joint angle errors, mak-
ing comparisons difficult. On the BML-MoVi dataset, our
method performs comparably to BioPose. Ultimately, a pro-
liferation of AI-powered methods for accessible biomechan-
ics will increase use of clinical movement analysis. These
large datasets will enable data-driven precision rehabilitation
interventions (54).
In conclusion, we present a method for extracting accurate
and interpretable joint kinematics from smartphone videos.
We validate this method in inpatient, outpatient therapy,
and clinical settings, finding it to be highly usable and ro-
bust—even in the presence of nearby therapists and assistive
devices. Importantly, gait scores extracted from this approach
correlate well with commonly used clinical scales such as the
10MWT, BBS, and mJOA. This approach enables increased
fidelity in clinical and at-home monitoring of movement im-
pairments, paving the way for a big data revolution in move-
ment science.
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Supplementary Methods
Datasets.

MMMC Dataset. This study was approved by the Northwestern University Institutional Review Board. Data were collected in
our laboratory using handheld smartphone video (30), an instrumented GaitRite walkway, and an MMMC system (41). The
dataset includes recordings from 33 control participants, 48 lower limb prosthesis users (LLPUs), and 73 individuals with a
history of neurological injury, including 6 pediatric cases. All recording sessions consisted of overground walking along the
GaitRite walkway (8 m) while a researcher followed the participant with smartphone.
Control participants typically completed three recording sessions. The first session included nine walking trials, while subse-
quent sessions incorporated additional assessments such as the Four Square Step Test (FSST), Postural Sway Test (PST), Timed
Up and Go (TUG), and Tandem Gait, averaging 15 recordings per session. LLPUs were generally recruited from an outpatient
clinic for a single session including the additional tasks if the participant felt comfortable. The neurologic participants were
largely outpatients (40) collected with both PBL and MMMC. We also analyzed single-view videos from MMMC data col-
lected from 27 participants admitted to inpatient rehabilitation using static cameras installed in therapy gyms at Shirley Ryan
AbilityLab. These participants walked at a self selected speed using whatever assistive device they generally used (e.g. walker,
cane, ankle-foot orthosis, gait belt).
Portable Biomechanics Laboratory (PBL) All smartphone RGB video was captured on a Samsung Galaxy S8 or Samsung
Galaxy S20 Ultra at 30 Hz and 1080 × 1920 resolution (30) using a custom application. This application simultaneously logs
smartphone RGB video, and if available, depth video, internal phone sensor logs (gyroscope, magnetometer, accelerometer,
and fused orientation estimate), and wearable sensor data (55). During walking trials, a researcher held the phone in portrait
orientation mounted on a 3-axis gimbal and followed the participant from behind at a mostly sagittal, but partially oblique view.
The gimbal was used solely to improve visualizations; the method remains accurate without it, though the resulting video may
be slightly shakier. FSST was collected at a frontal view in front of the participant, and TUG was collected from a sagittal view
with the camera rotating to follow the participant.
The video and sensor data from the smartphone application was uploaded to a secure cloud server for storage and later down-
loaded into PosePipe (35), an open source application implementing a variety of computer vision tasks such as person detection,
annotation, and 2D and 3D keypoint detection. PosePipe tracks all data and analyses in a MySQL database using DataJoint
(56). This makes it feasible to manage the 100s of thousands of videos we have collected.
Multi-View Markerless Motion Capture (MMMC) Recordings in the laboratory dataset employed the Multi-View Markerless
Motion Capture (MMMC) system which consists of 8-12 FLIR BlackFly S GigE cameras which acquire synchronized RGB
video at 29 fps. Cameras were arranged such that at least three cameras covered participants at all points during a recording.
A detailed description of this system can be found in (41). For this system, we reconstructed biomechanical fits using meth-
ods described in (26). In total, the dataset includes 1,267,586 frames across 2,206 trials from 143 participants—comprising
1,056,861 frames from 2,028 trials of 116 participants recorded with both the PBL and MMMC systems, and an additional
210,725 frames from 178 trials of 27 participants recorded with a single MMMC camera—amounting to 11.7 hours of video.

OMC Dataset: BML-MoVi. The publicly available BML-MoVi (38) dataset contains synchronous optical motion capture (OMC)
data and smartphone RGB video data of 90 able-bodied participants performing a variety of everyday and sports movements.
The OMC data contains a dense set of 87 markers, suitable for reconstructing biomechanics recorded at 120 Hz.
Smartphone video was collected at 30 Hz and 1080 x 1920 resolution using an iPhone 7. The smartphone video totals 415,060
frames for 3.8 hours of video.
For the OMC data, we fit our model using only the 3D keypoint loss as the markers had already been triangulated and cleaned,
following the approach from (26). For the smartphone data, we apply the 3D and 2D keypoint loss following the method we
use on the PBL data and describe below.

In-Clinic Dataset. This study was approved by the Northwestern University and Washington University in St. Louis Institutional
Review Boards. To validate our methods in a real-world clinical environment, we deployed our PBL system (30) in two outpa-
tient clinics. The first was a neurosurgery clinic treating patients with cervical myelopathy (CM)—a degenerative condition of
the cervical spine that often impairs gait and balance. During routine pre- and post-operative visits for spinal decompression,
participants were asked to walk three times at a self-selected pace and three times at a fast pace down the clinic hallway while
being recorded from behind by a clinician. At each visit, patients completed the modified Japanese Orthopedic Association
(mJOA) questionnaire (57, 58) to assess their symptoms. The CM cohort includes 911 videos from 55 patients collected at
multiple timepoints: pre-surgery, 6 weeks post-surgery, 3 months post-surgery, and 1 year post-surgery. 17 of these participants
have sessions before and after surgery, which were used in our sensitivity analysis.
The second cohort consisted of 110 videos of 19 participants with knee osteoarthritis (KOA) coming to clinic for corticosteroid
injection. As before, these videos were filmed in the hallway before or after the visit.
In total, this dataset contains 589,557 frames or 5.5 hours of video in clinical settings.
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Keypoint Detection. We employed MeTRAbs-ACAE (37) to detect 2D and 3D virtual marker locations from RGB videos.
As recommended by the author, we approximated confidence by measuring the standard deviation of each 3D joint location
estimated from 10 different augmented versions of each video frame. This was converted to a confidence estimate using a
sigmoid function with a half maximum at 30 mm and a width of 10 mm. This results in a confidence score c(t, j) ∈ [0,1] for
each timepoint t and joint j. For training, we only used frames where the person was fully in the video view, allowing for short
periods (<1.0) seconds of partial coverage, reducing total dataset size to 12.4 hours.

Differentiable Biomechanical Model. Smartphone and MMMC reconstructions utilized a biomechanically-grounded model
implemented in Mujoco from LocoMujoco (59), originally based on an OpenSim model (60). Mujoco’s GPU acceleration
engine, MJX, supports parallelizing forward kinematic passes of this model. We have previously optimized site locations for
the 87 MoVi keypoints on a similar model (39). We also removed collisions other than the feet, added a neck joint with 3 degrees
of freedom, and extended the hip flexion and extension ranges. Model scaling is controlled by 8 scaling parameters: overall
size, the pelvis, left thigh, left leg and foot, right thigh, right leg and foot, the left arm, and the left leg. We follow notation used
by the skinned multi-person linear model (SMPL) (61) and represent our GPU-accelerated, biomechanically-ground, forward
kinematic equation as:

x = M(θ,β) (1)

where θ ∈ R40 are joint angles that pose the model, β ∈ R8+87×3 are the 8 scaling parameters and an offset for each of the 87
keypoints. x ∈ R87×3 are the marker locations following the scaling, site offset and forward kinematics.

Implicit Representation. We represent the kinematic trajectory for each trial as a learned implicit function, fθ, implemented
as a multi-layer perceptron that takes time as an input using sinusoidal positional encoding (62) and outputs joint angles θ(t).
In addition to the 40 joint angles output from the final layer, we also output 3 parameters representing the orientation of the
smartphone in global space r.

fϕ : t → (θ,r) (2)

The outputs of fϕ corresponding to rotations (i.e., not the pelvis location) are passed through a tanh nonlinearity to limit it
to (−1,1) followed by scaling this range to match the biomechanical model joint limits. Joint angles, θ(t), are then passed
through the forward kinematic equation above (Eq. 1) to obtain the 3D joint locations, x(t), at that time.

Reference frames. We define the global reference frame {n} for our model output. Since the PBL system tracks changes in
phone orientation from the smartphone IMUs, we are able to relate the orientation of the camera frame {c} to the orientation of
the world frame at any point in time using Rnc ∈ SO(3). We follow the convention presented in (63) for rotations where Rab

represents frame {b} relative to frame {a}.

Model Fitting. Each trial is represented as a unique implicit function. We jointly optimize the parameters of the implicit
representations for N trials {ϕ0,ϕ1, ...,ϕN−1}, the body scaling, and site offset parameters β, to follow 2D and 3D keypoints
extracted from video as well as orientation data recorded from the smartphone. This approach of jointly learning kinematics
and body scaling and marker offset for the entire session has been called bilevel optimization (64). For example, a session
consisting of 10 trials would jointly optimize 10 implicit functions fθi

and a single set of body scaling parameters β.
For each training step, we evaluated every implicit function with a batch of 300 time samples for each trial to extract the
predicted joint angles at those time points θ̂(t), which is performed in parallel across all trials. Using these poses and scaling
parameters, we performed GPU accelerated forward kinematic passes of our model (Eq. 1) to predict 3D joint locations for
that training batch, x̂ = M(θ̂(t), β̂). Next, we describe the losses used during this optimization. To reduce notational clutter,
we drop the explicit time and trial dependence in the loss definitions.

3D Keypoint Loss. We obtain a pure video estimate of the 3D keypoint locations in the camera reference frame xc using
MeTRAbs-ACAE (37). We can rotate these keypoints into the global frame using xn = R̂ncxc and define a loss function on
the Euclidean distance in centimeters between keypoints from the model x̂n with the video keypoints as:

L3D(ϕ, β⃗) = 1
J

∑
j∈J

c(j)g(∥x̂n − R̂ncxc∥2) (3)

where c(j) ∈ [0,1] is the confidence score for joint keypoint j, which also varies with time, and g(·) is a Huber loss which is
quadratic within 10 cm and linear after, necessary for stabilizing early training. This loss is computed between the 3D keypoints
set with their mean translation removed.
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2D Keypoint Loss. MeTRAbs-ACAE also produces 2D keypoints in the image frame u⃗ ∈ R87×2. The 3D keypoints produced
by our model x̂n can be rotated into the camera frame using R̂nc and projected through a camera model Π with the calibrated
camera intrinsics, to compute the error in pixels with detected 2D keypoints:

L2D(ϕ, β⃗) = 1
J

∑
j∈J

c(j)g(∥Π(R̂−1
nc x̂n)− u⃗∥2) (4)

In this loss, g(·) is a Huber loss which is quadratic within 5 pixels and linear after, which reduces the sensitivity of the fits to
outliers.

Phone orientation loss. For videos collected with our PBL platform that include phone orientation data, we evaluate the implicit
functions at the phone IMU sample points and extract the predicted phone orientation trajectory R̂nc(t). We found representing
Rnc as a rotation vector led to more stable training; however, the phone orientation output from internal sensors was represented
as a quaternion, so we convert Rnc to a quaternion for calculating the angular difference between the predicted and measured
orientation, measured in degrees with the following loss:

Lphone = 180
π

·2 ·arctan


√

q2
1 + q2

2 + q2
3

|q0|

 (5)

Total loss and optimization. These terms were combined with hyperparameters (λ1 = 1,λ2 = 1e − 1,λ3 = 1), to control their
relative weights and provide an overall loss:

L = λ1L3D +λ2L2D +λ3Lphone (6)

We defined implicit functions and computed the loss using Equinox (65) and JAX (66), optimizing with the Adam optimizer
for 25,000 iterations of gradient descent. Weight decay of 1e−5 was applied to the implicit function parameters. With Optax,
we set the learning rate to start at 1e−3 and decay exponentially to 1e−6 (66, 67).
For MMMC (26), we found random initialization of the network sufficient for optimizing implicit representations. However,
for monocular videos, this often failed to converge if the subject wasn’t initially visible to the camera. To address this, we
adjusted each trial’s implicit function by biasing the final layer to place the pelvis 1.5 meters from the camera and initializing
Rnc outputs to the median of observed Rnc values.

Gait Deviation Index. The GDI maps cycle-aligned joint angles to a lower-dimensional subspace in which we can measure
distance from a normative population. We computed gait event timings for every self-selected gait trial using a pretrained
transformer from our prior work (31), after discarding the first and last step. This generated 13,609 gait cycles from the PBL
system. Of these, 1,267 were of control participants and we use these and 4,675 gait cycles from our data collection at the
American Society of Biomechanics meeting and 3,066 cycles from our MMMC system as normative data.
As PBL most accurately captures hip flexion, hip adduction, and knee flexion angles, we only used these kinematic traces in the
GDI. Each kinematic trace was interpolated to 50 points at 2% increments across the gait cycle and concatenated to a 150 × 1
column vector. We extract right-sided waveforms aligned between right initial contact events and aligned left-sided waveforms
to the left foot initial contact.
While the original GDI (42) used singular value decomposition to reduce this high dimensional data, more recent findings (43)
demonstrate that principal component analysis (PCA) finds a more suitable subspace. We fit PCA to our 150 × 21,350 matrix,
finding that 12 components accounted for 95% of the variance.
This resulted in a GDI value for every step a subject took. We averaged a participant’s GDI over all steps (left and right) they
took on a given day to compute a singular GDI number for each participant and session.

Statistics. To compare population-level GDIs, we first assessed normality using the Shapiro-Wilk test (68). For comparisons
between two normally distributed populations, we used Student’s t-test. When at least one distribution was non-Gaussian, we
used the Mann-Whitney U test to assess group differences.
To evaluate relationships between smartphone-based metrics and clinical scales, we used different correlation measures based
on variable type. For associations between two continuous variables (e.g., GDI and 10MWT speed), we computed the Pearson
correlation coefficient. For associations between a continuous variable and an ordinal or categorical variable (e.g., GDI and
mJOA), we used the Spearman rank correlation coefficient.
To assess the responsiveness of various measures to surgical intervention in the CM cohort, we computed the Standardized
Response Mean (SRM) (45, 46), defined as:

SRM = D̄x

SD(Dx) (7)
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Supplementary Table 1. Median Joint Angle Errors (median (nIQR)) for clinical and BML-MoVi datasets.

Dataset Clinical BML-MoVi
Camera Handheld Static Static

Hip Flexion 3.93 (2.35) 5.37 (2.97) 4.80 (2.68)
Hip Adduction 1.69 (0.74) 1.97 (0.84) 1.68 (0.66)
Hip Rotation 2.70 (1.00) 2.73 (0.94) 3.30 (1.22)
Knee Angle 4.05 (1.70) 3.92 (2.12) 2.11 (0.53)
Ankle Angle 5.38 (2.20) 4.94 (1.97) 3.55 (1.25)
Lumbar Extension 3.09 (1.93) 4.53 (3.86) 5.30 (3.00)
Lumbar Bending 1.43 (0.65) 1.59 (0.76) 1.64 (0.86)
Lumbar Rotation 1.91 (1.11) 1.78 (0.85) 1.63 (0.84)
Neck Extension 4.34 (4.40) 4.06 (2.97) 3.95 (2.94)
Neck Bending 1.88 (1.23) 2.05 (1.35) 2.31 (1.02)
Neck Rotation 3.01 (2.40) 2.63 (1.62) 2.85 (1.41)
Arm Flex 3.63 (2.16) 3.14 (1.74) 2.31 (0.97)
Arm Add 1.26 (0.70) 1.94 (1.18) 1.94 (0.67)
Elbow Flex 4.22 (2.38) 4.09 (2.06) 3.85 (1.18)
All 2.79 (0.86) 2.96 (0.78) 2.74 (0.50)

where Dx is the vector of pre- to post-surgery differences in measure x, D̄x is the mean of these differences, and SD(Dx) is
their standard deviation. We calculated SRMs for the mJOA, cadence, double support time, and GDI to compare their sensitivity
to change.
To estimate confidence intervals for the SRM, we employed the jackknife technique (47) as was done in (46). This nonparamet-
ric resampling method systematically recomputes the SRM by omitting one observation at a time, producing a set of jackknife
replicates. These replicates are then used to compute pseudo-values, which approximate the influence of each observation on
the overall SRM. The mean of these pseudo-values serves as a bias-corrected point estimate of the SRM, and their variability
provides an estimate of its standard error. A t-distribution is then used to construct confidence intervals, enabling inference
about the SRM’s precision without assuming normality of the underlying data.
We defined significance as p < 0.05 in all cases.

PBL vs MMMC GDI. To assess the impact of recording system (MMMC vs. PBL) on GDI, we conducted a separate analysis
using only sessions recorded simultaneously with both systems. For each session, we computed GDI twice: once using PBL
data with a PBL-based normative distribution, and once using MMMC data with an MMMC-based normative distribution. We
then compared the resulting GDI values for each participant across the two systems.

Fitting Residuals. We measure the 2D Fitting Residual and 3D fitting residual to evaluate the closeness of biomechanical fits
to video-based joint locations. The 2D fitting residual evaluates the reconstructed model’s agreement between the video-based
2D keypoints by projecting the reconstruction through a known camera model and comparing the Euclidean distance in the
pixel space. The 3D Fitting Residual compares Euclidean error between 3D keypoints of the biomechanical reconstruction and
video-based 3D keypoints or 3D markers.

Supplementary Results
Detailed Analysis of Joint Angle Errors. Overall, median joint angle error (MJAE) was approximately 3° across datasets,
populations, and activities. Below, we highlight key trends and deviations from this general pattern, offering possible expla-
nations and practical takeaways for users. However, we do not perform extensive statistical testing across the many variables
examined, as the focus of this work is on enabling accessible motion capture rather than achieving the most precise measure-
ment possible.
Across datasets, the BML-MoVi dataset exhibited the lowest MJAE (2.74°; Table S1, Fig. 4C), which is expected since it
included only control participants. The MMMC dataset showed similar errors when using a handheld camera (2.79°), but
higher errors with a static camera (2.96°). This increase is likely due to the greater distance between the participant and camera
in the static setup, whereas the handheld condition involved a researcher following the participant more closely (Fig. 2). Some
of the added error in the MMMC dataset may also be attributable to noise in the MMMC system itself, despite the use of
multiple cameras.
When comparing clinical populations within the MMMC dataset, control participants showed the lowest MJAE (2.51°), while
participants with neurological conditions showed the highest (3.32°; Table S2). This is consistent with expectations: many
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Supplementary Table 2. Median Joint Angle Error (median (nIQR)) for handheld smartphone reconstruction across different clinical
populations.

Joint MJAE (nIQR)
Control Neurological LLPU Pediatric

Hip Flexion 3.49 (2.27) 3.92 (2.58) 4.69 (2.10) 3.06 (1.32)
Hip Adduction 1.55 (0.69) 1.93 (0.78) 1.80 (0.80) 1.92 (0.27)
Hip Rotation 2.66 (1.17) 2.83 (0.79) 2.70 (0.93) 2.74 (0.61)
Knee Flexion 3.77 (1.44) 4.36 (1.48) 4.68 (2.08) 3.89 (0.90)
Ankle Angle 5.49 (2.75) 5.41 (1.60) 5.28 (1.89) 5.30 (1.24)
Lumbar Extension 3.13 (2.22) 3.29 (1.85) 2.89 (1.51) 4.09 (2.28)
Lumbar Bending 1.38 (0.64) 1.58 (0.65) 1.44 (0.66) 1.50 (0.37)
Lumbar Rotation 1.71 (1.13) 2.19 (1.08) 2.06 (1.02) 1.95 (0.34)
Neck Extension 3.62 (2.76) 10.12 (6.58) 4.27 (4.49) 7.16 (3.60)
Neck Bending 1.62 (1.12) 2.49 (1.46) 1.88 (1.11) 2.37 (2.29)
Neck Rotation 2.78 (2.11) 5.00 (3.78) 2.63 (1.90) 3.95 (2.54)
Arm Flex 3.01 (1.61) 4.33 (3.03) 4.43 (2.68) 4.00 (1.47)
Arm Add 1.06 (0.54) 1.71 (1.28) 1.47 (0.73) 1.74 (0.95)
Elbow Flex 3.59 (2.09) 4.79 (2.47) 4.90 (2.54) 5.18 (2.46)
All 2.51 (0.78) 3.32 (0.92) 2.97 (0.79) 3.17 (0.48)

neurological participants used assistive devices—such as canes, walkers, or ankle-foot orthoses—which can obstruct joint
visibility and hinder keypoint detection. Additionally, physical assistance from a therapist using a gait belt may contribute
to further occlusion and error. Lower limb prosthesis users (LLPUs) also exhibited elevated MJAE (2.97°), reflecting known
limitations of keypoint detectors when applied to prosthetic limbs (30).
Across different activities, MJAE remained relatively stable (Fig. 4A). Unsurprisingly, standing had the lowest MJAE (1.80°),
followed by the Four Square Step Test (FSST; 2.47°), both of which involve minimal occlusion. In contrast, activities such as
the Timed Up and Go (3.17°), tandem gait (3.22°), and walking (2.95°) yielded slightly higher errors—likely due to partial leg
occlusions caused by the oblique handheld filming angle used during much of these trials.
Joint-level trends in MJAE were largely consistent across populations (Table S2). Notably, ankle MJAE exceeded 5° in all
populations, indicating a clear need for improved foot keypoint detection. Elbow flexion error approached 5° in clinical cohorts,
likely because one arm is frequently occluded during walking. Hip flexion error was higher than expected in the BML-MoVi
and static-camera MMMC datasets (Table S1). These datasets featured more frontal views of the participant, which—as shown
in our viewpoint analysis (Fig. 3C)—can increase sagittal plane error. Interestingly, this often manifested as a consistent offset
rather than an error in the joint’s range of motion. A more detailed investigation of these effects, including marker placement
and viewpoint-dependent bias in keypoint detection, is left for future work.

PBL vs MMMC GDI. GDI values computed from PBL and MMMC recordings of the same sessions were highly consistent,
despite differences in recording modality and normative datasets. We found a strong, significant, correlation between the two
different modalities (0.85) demonstrating that PBL and MMMC both likely capture the same features needed for downstream
gait analysis tasks (Fig. S1). We note that the PBL-based GDI shows a greater change than the MMMC system, which could
suggest some of the deviations in gait detected by the PBL system arise from measurement error from the PBL system; this is
more impactful for greater gait impairments.

Fitting residuals. Across all datasets and modalities, 2D and 3D residuals between reconstructed and detected joint locations
were generally low at <5 pixels for 2D reprojection errors and <1.5 cm for 3D marker errors. Correlations between fitting
residuals and MJAE were significant but low: 0.35 and 0.24 for 2D and 3D residuals, respectively (Fig. S2A,C). While
this suggests there may be some relationship between the closeness of our model fit to the actual joint angle accuracy, it is
quite weak, at least at the levels most of our reconstructions achieved. This likely highlights the fact that the underlying
computer vision algorithm does not have well calibrated confidence scores, something we aim to address in the future (25, 49).
Importantly, we do not see any obvious issues with our approach generalizing to clinical settings as there were not large
differences in either residual between in-lab and in-clinic cohorts (Fig. S2B,D).
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Supplementary Figure 1. Gait Deviation Index Comparison between Monocular and Multi-View Fits GDI values were computed
separately using either PBL (monocular) or MMMC (multi-view) recordings from the same sessions. For each computation, we used
only the data and normative distribution corresponding to the respective modality (e.g., monocular GDI was calculated using single-
camera fits and a single-camera-based normative distribution).

Fitting Residuals by MJAE and Population
A B

C D

Supplementary Figure 2. Fitting Residuals. Correlation between 2D and 3D fitting residuals and MJAE is shown in (A), (C),
respectively. 2D and 3D fitting residuals distributed across clinical populations is shown in (B) and (D), respectively.
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